

Bronchiolitis CoMET Guideline

This guideline is for use by healthcare staff, at CoMET undertaking critical care retrieval, transport and stabilization of children, and young adults.

CoMET is a Paediatric Critical Care Transport service and is hosted by the University Hospitals of Leicester NHS trust working in partnership with the Nottingham University Hospitals NHS Trust.

The guidance supports decision making by individual healthcare professionals and to make decisions in the best interest of the individual patient.

This guideline represents the view of CoMET, and is produced to be used mainly by healthcare staff working for CoMET, although, professionals, working in similar field will find it useful for easy reference at the bedside.

We are grateful to the many existing paediatric critical care transport services, whose advice and current guidelines have been referred to for preparing this document. Thank You.

Executive Lead/ Medical Director:	Andrew Furlong (LRI, UHL – <u>andrew.furlong@uhl-tr.nhs.uk</u>)			
Author:	Bedangshu Saikia – CoMET Consultant, UHL			
	Bedangshu.saikia@uhl-tr.nhs.uk			
	Adrian Low – CoMET Registrar			
	Adrian.low@uhl-tr.nhs.uk			
	Hazel Perrett – CoMET Nurse, UHL			
	Hazel.perrett@uhl-tr.nhs.uk			
Guideline Lead:	Mohammad Zoha – CoMET Consultant, UHL			
	Mohammad.zoha@uhl-tr.nhs.uk			
Clinical Lead:-	Georgina Harlow – CoMET Clinical Lead			
	Georgina.harlow@nuh.nhs.uk			
	Georgina.harlow@uhl-tr.nhs.uk			
Approved By:	ved By: UHL Policy and Guideline Committee			
Date of Latest Approval:	of Latest Approval: 27 October 2023 – Trust ref: B25/2023			
Version:	(1)			
Next Review Date:	October 2025			

Education and Training

1. Annual Transport team update training days

2. Workshops delivered in Regional Transport Study days/ Outreach

Monitoring Compliance

What will be measured to monitor compliance	How will compliance be monitored	Monitoring Lead	Frequency	Reporting arrangements
Incident reporting	Review related Datix	Abi Hill – Lead Transport Nurse <u>abi.hill@uhl-tr.nhs.uk</u>	Monthly	CoMET Lead Governance Meeting
Documentation Compliance	Documentation Audit	Abi Hill – Lead Transport Nurse <u>abi.hill@uhl-tr.nhs.uk</u>	3 Monthly	CoMET Lead Governance Meeting

Nottingham University Hospitals NHS NHS Trust

Bronchiolitis

References:

- 1. Westrope C (2018) Humidified High Flow Nasal Cannula (HHFNC) Oxygen Therapy. Leicester Royal Infirmary Children's Hospital
- 2. Gilhooley C, Silvestre C, McHale S(2016) Guideline for HFNCT (High Flow Nasal Cannula Therapy) Nottingham Children Hospital
- 3. https://www.rch.org.au/clinicalguide/guideline_index/Bronchiolitis/
- 4. Richards-Belle A et al FIRST-line support for assistance in breathing in children (FIRST-ABC): a master protocol of two randomised trials to evaluate the non-inferiority of high-flow nasal cannula (HFNC) versus continuous positive airway pressure (CPAP) for non-invasive respiratory support in paediatric critical care BMJ Open. 2020 Aug 4;10(8):e038002.

Related guidelines:

- 1. Use of high flow in transport (CoMET's high flow guidance) and
- 2. Emergency pre-intubation checklist (CoMET)

Appendix 1

Diagnosis:

- 1. Age group: <2 years (peak 3 6 months)
- 2. Lower respiratory tract disease characterized by inflammation and associated commonly with moist cough (could be paroxysmal), respiratory distress, wheeze, crackles, hyperinflation and feeding difficulties.
- 3. Apnoeic episodes more likely in the younger infants.
- 4. Preceded by fever-coryzal illness almost in all cases.
- 5. Relatively unusual ways of presentation include encephalitis, myocarditis, arrhythmias and SIADH

Risk factors for severe disease:

Prematurity, chronic lung disease, underlying immunodeficiency, congenital heart disease, neuromuscular disorders and/or age <3 months.

Mild		Moderate	Severe		
•	Mild tachypnoea	Intermittent irritability	 Increased irritability or lethargy / fatigue 		
•	Mild chest wall	 Increased tachypnoea 	Marked tachypnoea		
	retraction	 Moderate chest wall retraction 	Marked chest wall retraction		
•	SpO2 >92% in room	 Suprasternal retraction 	Marked suprasternal recessions		
	air	 Nasal flaring 	Marked nasal flaring		
•	Normal feeding	 SpO2 90-92% in room air 	• SpO2 <90% in air		
•	No apnoea	Reduced feeding	 Hypoxemia may not be corrected by Oxygen 		
		Brief apnoeas	Reluctant / not able to feed		
			 Frequent / prolonged apnoeas 		
			Rising CO2		

Assessment of severity:

University Hospitals of Leicester

Appendix 2

Assessment of successful vs failed non-invasive respiratory support:

Success of treatment	Failure of treatment		
Reduction in frequency/ severity of apnoea	Persistent apnoeas		
Reduction in oxygen requirement	Increasing oxygen requirement		
 Reduction in heart rate and respiratory rate 	 Unchanged/ rising heart rate and respiratory rate 		
(evidence suggests possibly within first 90 minutes)	Failure to improve respiratory acidosis		
 Improvement in respiratory acidosis 	 An unchanged or increased work of breathing 		
Reduction in work of breathing	• SpO2< 92% at FiO2 > 60% and maximal age-appropriate		
	flow rate		

Appendix 3

Starting and weaning HFo2 [See CoMET High Flow Guideline]

Consider WEANING when

FiO2 is ≤0.40 AND

respiratory distress is not severe†

Change to Weaning flow rate based on patient weight

Weight (kg)	≦12	13-15	16-30	31-50	>50
Starting flow rate	2 Vmin/kg	25-30 Vmin	35 Vmin	40 Vmin	50 Vmin
Weaning flow rate	1 Vmin/kg	13-15 _{Vmin}	18 I/min	20 Vmin	25 Vmin